友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
3C书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

黑洞-第12章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



的缓慢衰减。
    根据爱因斯坦理论所作的计算与在12年里仔细记录的观测结果精确相符。大多数其他的引力理论则与这些观测不符。PSR1913+16的轨道周期每年减小兀毫秒,在大约3亿年里两颗中子星将碰在一起,并产生最后的引力辐射爆发。
     星震
    还有另外一个改变脉冲星旋转状态的现象,但这次是一种加速星体的突然事件,称为频率突增(这个词取自电子学,是指一种使本来运行完好的部件受到影响的短暂突发事件)。它在几天里使脉冲星的周期减小十万分之一秒(即使旋转速度增大,图24)。船帆座脉冲星在1969年2月突然转快,在1971年和1976年又先后发生了两次。其他几个脉冲星也有过频率突增的现象,包括蟹状星云脉冲星。但是旋转速度的这种突然增长是很小的,大约一个月后,由于磁制动导致的自然减慢,中子星又恢复突增前的旋转速度。
    这种频率突增现象能用由不稳定性所导致的、影响中子星外壳并急剧改变其转动惯量的“星震”来解释。一个快速旋转的中子星,其两极处会稍微变平,赤道上会稍微张大,随着时间的增长,这种变形所引起的表面张力会变得非常大,表面就会被无情地撕裂,以实现再调整。裂缝虽只有毫米量级,释放的能量却大得惊人:中子星的震动可达里氏25级(里氏级是用来量度地震所释放的能量的,每增大一级表示能量增大20倍),而地球上记录的最剧烈震动从未超过8.9级。
    但是,船帆座脉冲星已经历几次星震的事实引起了一些天体物理学家对表面震动模型可靠性的怀疑,因为这种模型所预计的两次震动之间的间隔应是数百年而不是数年。现已提出对频率突增的其他解释,包括对中子星结构的根本性修改:中子星深层的湍流运动,或甚至是其核心的“相变”(类似于由液态变成固态),都会迫使其外壳重新调整。
    频率突增的确能提供关于中子星内部结构详情的重要信息,这是一个天文观测为粒子物理提供帮助的极好例证。那么,我们对中子星的内部结构究竟知道多少呢?
     中子星内部
    乍看之下,中子星就是一个巨大的原子核。不同的只是,中子星是由引力来维持的,原子核则依靠核力。
    在中子星内,在只不过是几公里的距离上,引力是如此之强,它能把物质固定在非常确定的结构中。主要表现之一是表面上的所有不规则性都被消除,中子星上最高的山峰只有几厘米高。所有导致脉冲星电磁辐射的现象都发生在一个热到1000万度的薄薄外层。
    中子星的内部结构仍在猜测之中,一种可能的描述如图万所示。星体由一层1公里厚的铁壳包着,铁原子核组成的固体晶格沉浸在简并电子海里,密度由每立方厘米1吨(正是白矮星的密度)向内增至每立方厘米40万吨。
    往下是“慢层”。这一层中越向内深入,铁核中包含的中子就越多,但同时又越难以保持住,中子在一定程度上发生衰变。在大约5公里的深处,中子从核中逃离,在简并海中分解,产生的质子簇在这个海中漂浮,密度增大到每立方厘米1亿吨。
    在大约10公里的深处,中子物态成为星体的最重要成分。难以置信的压力使晶体结构液化为主要由中子、质子和电子组成的液体。这种液体可能是超流体,一种具有奇特性质的理想流体:完全没有粘滞。粘滞总是趋于消除液体中的任何不规则性,因此蜂蜜的粘滞性就比水大,而超流体里的一个旋涡能保持数月之久(实验室里可以把氦冷却到很接近于绝对零度而变成超流体)。
    最后是半径约为1公里的固体核心,其组成还远不能确定,因为我们对在超过每立方厘米10亿吨的高密度下物质可能存在的状态还几乎一无所知。但是我们仍能像对在原子核中发现的基本粒子的性质那样进行推测,各种有着奇怪名称的模型已被发明出来:固体中子晶格,介子凝聚体,夸克物质,强子汤,等等。
     致密物质的奥秘
    中子星的温度、密度、压强和磁场等极端条件是实验室里不可能复制出来的,因而为核物理、原子物理、等离子体物理、相对论和电动力学等现代物理学科展开了崭新的视野。
    我们已经清楚地看到,为了描述中子星的内部,就必须将未能揭开高密度物质奥秘的实验物理予以扩展。迄今对致密物质的状态方程(即支配热力学量变化的定律,例如压强可以表示为密度或其他量的函数)还几乎一无所知,但是,它应当是限制在两个极端情况之间,一个极端是自由气体,其中的粒子不受任何力;另一个极端是“硬”态,即物质具有最大刚性的状态,其中的声速等于光速(物质中的声速随其刚性而增大,空气中的声速是330米/秒,水中是1500米/秒,钢中是5公里/秒)。
    所有允许的状态和所有的物质形式都处在这两个极端状况之间。但当涉及中子星时,对这两个极端之间的许多种可能性的选择却只能依靠对基本粒子间强相互作用的还很贫乏的认识。
    幸运的是,有一个很重要的性质不太依赖于具体的致密物质状态方程,这就是中于星的最大可能质量。白矮星不能支持超过1.4M的质量,因为超过这个限度时,作为主要成分的简并电子就成为相对论性的,星体就在自身重力下坍缩。同样道理,中于星也不可能支持任意大量物质的堆积。稳定性极限对应着简并中于在巨大引力作用下变成相对论性的瞬间。
    为着以与白矮星相同的精度来计算中于星的最大质量,就需要知道与简并电子情况同样精确的简并中子物态方程,但现在还无人知道。但是,由下述推断可以得到极限质量的一个很好近似。中子星的密度从外壳向核心增大,在某一中间点达到原子核的密度,从这一点起物态方程的采用就必须谨慎。于是,由实验已经知道的亚原子核密度的物态方程就可以用来描述中子星的外层,对核心部分则采用最大刚性状态的方程,两个结果再合起来,总质量就是外壳质量与核心质量之和。
    这样得到的极限质量是3.ZM,这个极值很可能偏高。更精细的模型绘出的值在2到3Mpe 间。这些结果的根本意义在于,一个新问题立即出现:质量更大的恒星,引力坍缩的产物是什么?之久(实验室里可以把氦冷却到很接近于绝对零度而变成超流体)。
    最后是半径约为1公里的固体核心,其组成还远不能确定,因为我们对在超过每立方厘米10亿吨的高密度下物质可能存在的状态还几乎一无所知。但是我们仍能像对在原子核中发现的基本粒子的性质那样进行推测,各种有着奇怪名称的模型已被发明出来:固体中子晶格,。介子凝聚体,夸克物质,强子汤,等等。
     致密物质的奥秘
    中子星的温度、密度、压强和磁场等极端条件是实验室里不可能复制出来的,因而为核物理、原子物理、等离子体物理、相对论和电动力学等现代物理学科展开了崭新的视野。
    我们已经清楚地看到,为了描述中子星的内部,就必须将未能揭开高密度物质奥秘的实验物理予以扩展。迄今对致密物质的状态方程(即支配热力学量变化的定律,例如压强可以表示为密度或其他量的函数)还几乎一无所知,但是,它应当是限制在两个极端情况之间,一个极端是自由气体,其中的粒子不受任何力;另一个极端是“硬”态,即物质具有最大刚性的状态,其中的声速等于光速(物质中的声速随其刚性而增大,空气中的声速是330米/秒,水中是1500米/秒,钢中是5公里/秒)。
    所有允许的状态和所有的物质形式都处在这两个极端状况之间。但当涉及中子星时,对这两个极端之间的许多种可能性的选择却只能依靠对基本粒子间强相互作用的还很贫乏的认识。
    幸运的是,有一个很重要的性质不太依赖于具体的致密物质状态方程,这就是中于星的最大可能质量。白矮星不能支持超过1.4M的质量,因为超过这个限度时,作为主要成分的简并电子就成为相对论性的,星体就在自身重力下坍缩。同样道理,中于星也不可能支持任意大量物质的堆积。稳定性极限对应着简并中于在巨大引力作用下变成相对论性的瞬间。
    为着以与白矮星相同的精度来计算中于星的最大质量,就需要知道与简并电子情况同样精确的简并中子物态方程,但现在还无人知道。但是,由下述推断可以得到极限质量的一个很好近似。中子星的密度从外壳向核心增大,在某一中间点达到原子核的密度,从这一点起物态方程的采用就必须谨慎。于是,由实验已经知道的亚原子核密度的物态方程就可以用来描述中子星的外层,对核心部分则采用最大刚性状态的方程,两个结果再合起来,总质量就是外壳质量与核心质量之和。
    这样得到的极限质量是3.ZM,这个极值很可能偏高。更精细的模型绘出的值在2到3Mpe 间。这些结果的根本意义在于,一个新问题立即出现:质量更大的恒星,引力坍缩的产物是什么?第八章 31处
    没有引力的物理会是个什么样子呢?
                    ——爱因斯坦( 1950)
    白矮星和黑矮星。中子星和脉冲星,都是恒星的残骸,都还不算太捣乱,黑洞呢?米切尔和拉普拉斯猜想到巨大的不可见恒星可能存在,但他们既不知道这种星形成的机制,也没有考虑到太阳质量的黑洞。他们没有后来才发展起来的量子力学和广义相对论的知识。
    黑洞作为引力坍缩的一种可能结果而重新出现是在1939年,那时美国物理学家罗伯特·奥本海默(他已为中子星理论作出了贡献)和哈特兰·施奈德(Hartland Snyder)在用广义相对论方程研究一种球对称和没有内压强的简化“模型星”的坍缩。他们发现,在一定情况下引力是如此之强,以至于不可能有稳定的中子星形成。没有任何力量能够阻挡星体的坍缩,直至成为一个体积为零密度为无限大的“点”。远在达到这种状态之前,收缩的恒星就停止了与外部世界的一切通讯。
    关于恒星黑洞存在的理论预言因而建立在以下三个要点上:
    1.自然界没有任何力能够支撑3M以上质量的“冷”物质,即已经停止热核反应的物质。
    2许多已观测到的热恒星的质量远远超过3M
    3,大质量恒星消耗其核燃料并经历引力坍缩的时间尺度是几百万年,所以这样的过程已经在已有1优化年以上高龄的银河系里发生。
    上述论证的弱点是假定大质量恒星能产生出一个质量超过中子星稳定限度的简并核心——唯有它坍缩。已知最大的恒星质量达到10M(现在的纪录保持者是一颗称为HD698的恒星,其质量为113M人另一方面,所有恒星在演化过程中都以星风形式丢失一部分质量。对太阳和其他不很大的恒星来说,这种丢失在主序阶段是很小的,质量抛射主要以行星状星云的形式发生在核演化的末期。然而,有很好的理由认为,很大的恒星从诞生开始就抛射大量物质。我们对这个问题现有的理论和观测知识都还不足以得出确定的结论,甚至也还不能排除这样一种极端的假设,即无论恒星的初始质量有多大,星风造成的质量损失总能使其质量减小到3M以下,如果是这样,超新星中黑洞的形成就根本不可能了。
    但是,如在第4篇中将会看到的,我们相信质量为几个M&的黑洞已经在一些X射线源中被确实探测到了。以我们目前的知识,更合理的看法是,所有母体星质量为l(k──100。的超新星将要么产生中子星,要么产生黑洞。由高效计算机计算的关于超新星爆发的精细模型表明,有两种可能形成黑洞的情况。
    1.当简并核心的质量大于中子星稳定限度时,坍缩将直接导致黑洞形成,但是不知道是否伴随有物质的喷射(恒星外层不像中子星的情况那样从坚硬核上反弹)。
    2.当核心质量小于临界值而抛射的质量又很小时,首先是形成中子星,但是它不能支撑外层的重量,于是再坍缩成黑洞。
    除了这两种超新星中几倍Mpe量的黑洞形成的可能性外,还有一种在长时间中分阶段进行的可能性。首先有一个由超新星形成的中子星,接着的一个很长阶段是中子星捕获物质并堆积在其表面上(最有利的情况显然是在双星系统中),直到总质量超过稳定限度。这种机制与白矮星转变成中子星相似,要使它行得通,还要求堆积的气体不会像新星那样被星体表面的核反应炸散。
    总之,在恒星演化的旅途上,黑洞的
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!