友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
3C书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

神舟:载人航天的故事-第5章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



斯里哈里科塔发射场是印度的导弹试验和卫星发射场,位于印度南部东海岸的斯里哈里科塔岛。发射场于1979年正式使用,1980年7月18日印度用自制的火箭成功发射人造卫星,成为世界上第6个自行发射卫星的国家。  
                  
 着陆场
 载人飞船返回舱进入着陆状态要与地面的系统进行通信,地面人员需要迅速的估计和测量出着陆点,当航天器落地(有可能是海中)后地面人员要及时地赶到那里,营救航天员以及回收返回舱,并对返回舱内的有效载荷进行处置。
可以看到航天器的着陆因为其返回方式的不同不能使用它的发射场来着陆。为了使航天员安全可靠地着陆和回收,必须建设返回用的着陆场。着陆场在我们看来很可能就觉得它是一片广袤的草原、或是无际的大海。看不出与其它的草原、海洋有什么区别,但实际上这些着落场都是经过了计算、综合考虑多方面因素才选定的。比如,着陆场的选择要便于综合使用本国的航天测控与通信网;要有足够大的场地面积,以适应较大落点偏差的情况;根据本国的地域特点和国情选择陆上着陆还是海上着陆。
前苏联(俄罗斯)拥有辽阔的中亚细亚草原和西伯利亚大平原,东西绵延万里,所以较多采用国内陆上回收方式。着陆场设在拜科努尔发射场东北的一片草原上——东经66°~74°、北纬46°~52°的区域,面积约为40多万平方公里。之所以选择这个地区在于这里地域开阔,人烟稀少,自然条件适宜;同时拜科努尔发射场的测控通信设备可用于飞船返回和回收测控。
美国东西两边均濒临大海,拥有一支训练有素的海岸救生队伍和先进的海上救生技术与装备,且大海一望无际,便于搜索和回收,所以多选用海上着陆。但各个飞船的着陆区有所不同。执行任务中根据具体任务情况选定主着陆区、副着陆区和偶发事件应急着陆区。美国“阿波罗”飞船轨道飞行的回收计划要求有4个大的着陆区。 。 想看书来
我国在进行“神舟”飞船的试验时根据本国国情和飞船运行轨道特点,在内蒙古草原上建造了主着陆场,拥有回收1号、回收2号搜索雷达,并组建了直升机分队和地面搜索分队,配备跟踪、通信、运输、救护等设施,保证了〃神舟〃无人试验飞船的安全着陆和顺利回收。  
                  
 测控和通信系统
 载人飞船的在轨运行离不开地面的支持。地面与航天器要通过测控与通信系统保持联系。测控与通信系统一般由轨道测量、遥测、遥控、火箭安全控制、航天员逃逸救生控制、计算机系统及监控、船地间通信和地面通信等设备组成。
应用系统及地面保障设施
载人航天器的应用系统是指在太空中直接执行特定科学研究任务或开展其它活动的设备、仪器。
人类进入太空是为了寻找更广阔的活动空间,载人航天器使人类具备了太空遨游的条件,作为工具它使我们可以更好地探索空间。但载人航天器不是我们根本的目的,就像计算机为我们的工作生活提供了便利,航天器同样为我们开展太空探索提供了一条便利的通道。  
                  
 火箭学:牛顿定律与火箭学
 牛顿在1687年发表的著作《自然哲学的数学原理》中阐明了牛顿定律,这些理论后来成为火箭学的基础,那么如何用牛顿定律来揭示火箭及航天器的运动规律呢?首先我们讨论力和质量的概念。
力的作用在我们的生活中随处可见,比如手提着东西时的臂力,在水中的浮力等等,一般情况下,力量源(如推车的手)是可以看见的。不过产生这些力的真正能量却总是看不见的。力会使物体运动,或者改变其运动方向,或者停止物体的移动,但对物体的影响程度取决于该物体的物理特性,这个物理特性被称为质量。
在日常生活中,我们常说某个东西重量是多少千克(公斤),其真正的含义是这个物体的质量是多少千克。而实际的重量却不是这个。重量所表述的是重力对物体的作用程度,即在地表附近的物体要受到地球引力的作用,这个引力的大小与物体到地球质量中心之间的距离的平方成反比,通俗的说将一个物体到地球中心的距离增加1倍,地球对该物体的引力就减少为原来的四分之一。
地球引力
海拔高度重量100千克的物体0千米海平面的100%(980牛顿)10千米海平面的(977牛顿)100千米海平面的(950牛顿)1000千米海平面的(732牛顿)10000千米海平面的(149牛顿)
公制单位中质量的单位是千克,重量和力的单位是牛顿。
要注意重量随高度减少这一事实并不能解释航天员在太空出现的失重漂浮现象,在空间站最常出现的轨道,即距离地表350公里处的引力大约是地面上的90%。也根本谈不上失去重量!但航天员却实实在在感受到了失重,这是因为轨道上的飞行器是完全自由的落向地球;(它们之所以没有掉到地面上来,是由于飞行器以大约每小时28000公里的高速度向前运动,使得它的下落轨迹正好沿着弯曲的地球表面运动,所以能够保持环绕地球运行),就好像在一个自由下落的电梯里,重力将暂时消失一样。自由下落的空间站中的乘员所感受的正是这样一种零重力状态。我们应该清楚轨道飞行中的物体可能是失重的,但绝不是没有质量的。
有的解释说航天器之所以不掉下来,是因为物体围绕地球作圆周运动产生的离心力与地球引力相平衡的结果。如果事实果真如此,那又怎么解释,有的航天器并不作圆周运动,而是做抛物线或双曲线等非封闭曲线运动,它们没有〃离心力〃作用,为何也不掉下来呢?力的存在必须有产生力的力源,而所谓〃离心力〃或〃惯性离心力〃的力源是不存在的。它只是一种为了便于分析计算(使牛顿定律在非惯性坐标系中仍能正确应用)而提出的一种假想力。离心惯性力实际上并不存在,也不作用在所研究的航天器上,所以它不能与其它作用在航天器的力(例如重力)保持平衡。
在牛顿定律中第一定律涉及到惯性的特性。在没有外力作用时,运动中的物体将保持直线运动,而静止的物体,如果没有外力作用,同样仍是保持静止的状态。例如,静止的航天器不会自发的开始运动,必须有东西先推它一下或拉一下。反过来,运动中的航天器如果没有被某个东西施加作用,亦不会自己就停止、减速、加速或改变方向。
这样我们就可以讨论为什么航天飞行器无需多少推进剂就可保持轨道速度,而飞机则必须不断的消耗燃料才能飞行?飞机在飞行中要受到外部的空气阻力,这个阻力会使飞机减速,要克服这个力就需要燃料为飞机提供动力。而在太空中飞行的航天器,所受到空气阻力的影响非常的小,结果飞行器达到轨道速度后无需继续消耗推进剂就可保持速度,由于地球引力所提供的力量就可令其沿着地球的表面做圆形轨道运动,而不是顺直线飞离地球。
第二定律规定,力往往会导致物体改变速度。较强的力会使物体更快的加速或减速,对不同质量的物体要得到相同的加速或减速效果,所需的力也不同,质量大的物体所需的力要大于质量小的物体。在航天器的运动中,工程师可以据此计算出改变卫星运动所需的力。
第三定律揭示了火箭运动的基本原理。任何一物体推动另一物体时都有一个等量的力反作用于它本身。当火箭将燃烧的气体从排气管高速喷出时,这些气体反过来又把火箭向相反的方向推去。在航天技术中对通过排出气体产生的作用力称为发动机推力。
和很多人的想法不同,火箭并不靠推动外部空气向前运动。相反,由于有空气的存在,排出的气体与空气分子摩擦后往往会降低速度,这就减少了排气送给火箭的力,同时空气也对舰体产生阻力,从而降低了火箭的前进速度,所以火箭在太空的工作效率要比在大气层内的高。  
                  
 火箭学:简单火箭的结构
 简单的火箭包括一个高细的圆柱体,由相对较薄的金属制造而成。在这个圆柱内存放着火箭发动机的燃料和补给燃料罐,而为火箭提供推进力的发动机则放在圆柱的底部。发动机的底部是看起来像一个钟形的喷管,发动机通过一个装置——燃料输送系统可把原始的火箭燃料注入喷管顶部的燃烧室,燃料在这里燃烧,转化成易于向四处扩散的热气体。然后,喷管把扩散的热气导入与目标运动方向相反的方向。为了给火箭提供平衡的升力,通常喷管的指向是与一条从上之下贯穿火箭中心的虚拟线平行对称排列的,不过,大多数火箭尤其是大型火箭都能使其喷管偏离虚拟的中线几度,这叫做万向连接,可为飞行中的火箭提供一定的操纵能力。
在圆柱体的上部装有一个中空的流线型圆锥体,锥体的底座接在圆柱体上,锥尖朝上。这种圆锥体的造型使火箭接触空气的横截面达到最小,横截面积的缩小就减少了火箭排开空气所必需消耗的能量。一般来说,载人航天器或其它预备进入轨道的有效载荷都安放在火箭顶部的这个鼻锥内。在航天技术里称这个圆锥体为有效载荷整流罩或整流罩,火箭点火后的数分钟,这个圆锥体对有效载荷提供保护,使其免受因火箭加速穿过大气层下部而增强的风力的破坏。  
                  
 火箭学:推进剂
 火箭发动机的特点是同时使用两种不同类型的化学物质来支持燃烧反应,产生热排气。这两种化学物质就构成了火箭专家称之为推进剂的东西。这两种化学物质分别是燃料和氧化剂,燃料为火箭提供燃烧的物质以产生热排气,氧化剂为燃烧的过程供氧。我们应该知道所有的燃烧反应都要求有可燃物质和氧来支持。在大气层内有充足的氧气可以支持燃烧,所以汽车和飞机的发动机都不需要携带氧化剂,但火箭既要在大气层中工作,又要在太空飞行,因此必须自带氧来支持燃烧室的燃烧反应。火箭的推进剂根据化学物质的形态不同可分为液体推进剂和固体推进剂。
液体推进剂的燃料和氧化剂都是液态的保存在火箭的燃料箱中的。目前较普遍的一种液体推进剂组合是用混肼…50(类似煤油)作燃烧剂,四氧化氮作氧化剂。这种组合剂可在室温下储存,但其燃烧效率比较低。另一种组合是液氢做燃料,液氧做氧化剂。这种组合是当前最有潜力的组合,其燃烧效率很高,但由于液氢和液氧的沸点都很低,所以其保存需要超低温的储存箱,使温度接近绝对零度,在零下二百摄氏度左右,才能保证它们在液态,一旦温度超过沸点液体变成气体,就无法再用作推进剂,由于其比较复杂目前只有美国、俄斯、法国、中国和日本等少数几个国家掌握这种低温液体火箭技术。
大多数液体推进剂要求用火花点火开始燃烧。但有些燃料和氧化剂混合时会自动产生化学反应点火燃烧,我们称之为自燃推进剂。使用自燃推进剂的发动机不需要点火系统,而且更加可靠,但这种推进剂几乎可锈蚀所有与之接触的物质,而且含有剧毒。
推进剂比较
推进剂类型                  性能
液氢(燃料)液氧(氧化剂)燃烧效率很高多用于航天飞机及运载火箭末级昂贵、不易储存
混肼…50(燃料)四氧化二氮(氧化剂)燃烧效率一般多用于中型火箭价格适中、较易储存
RP…1高精炼煤油(燃料)液氧(氧化剂)燃烧效率一般多用于火箭第一级价格适中、不易储存
肼(燃料)四氧化二氮(氧化剂)燃烧效率一般自燃、多用于卫星价格相对便宜、腐蚀性极强
固体推进剂由油灰或橡胶状的可燃材料构成,是燃料和氧化剂的混合体。烧固体推进剂的火箭称为固体火箭。固体火箭的箭体与液体火箭的箭体差别不大,但内部没有推进剂储存箱,而是把整个火箭体的内部从上到下装满固体推进剂。在火箭体的中心有一条窄窄的圆柱形缝隙贯穿推进剂的模芯,该缝隙称为燃烧室,它可使推进剂从上到下均匀燃烧。火箭底部的喷管,将燃烧室的排气导入合适的方向。
由于燃烧室是推进剂在中间留出来的缝隙,如果这个缝隙是圆柱形的,当火箭顶端的点火器击发点火后,随着燃烧的继续,燃烧室的表面积开始增大,使得推进剂与推进剂接触的面积增大,每一时间燃烧的推进剂开始增多,产生的推力也相应的加大。因此火箭在最初产生的推力较小,但随着时间的增加,推力逐渐增大,直到燃烧的最后阶段火箭获得最大的推力。考虑一下如果缝隙的形状不同,那它产生推力的效果也会不同。星形开缝在整个加力期间会均匀的产生推力,但推进剂要比圆柱形
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!